Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13477-13487, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690585

RESUMO

Recently, metal sulfides have begun to receive attention as potential cost-effective materials for thermoelectric applications beyond optoelectronic and photovoltaic devices. Herein, based on a comparative analysis of the structural and transport properties of 2D PbSnS2 and 1D PbSnS3, we demonstrate that the intrinsic effects that govern the low lattice thermal conductivity (κL) of these sulfides originate from the combination of the low dimensionality of their crystal structures with the stereochemical activity of the lone-pair electrons of cations. The presence of weak bonds in these materials, responsible for phonon scattering, results in inherently low κL of 1.0 W/m K in 1D PbSnS3 and 0.6 W/m K in 2D PbSnS2 at room temperature. However, the nature of the thermal transport is quite distinct. 1D PbSnS3 exhibits a higher thermal conductivity with a crystalline-like peak at low temperatures, while 2D PbSnS2 demonstrates glassy thermal conductivity in the entire temperature range investigated. First-principles density functional theory calculations reveal that the presence of antibonding states below the Fermi level, especially in PbSnS2, contributes to the very low κL. In addition, the calculated phonon dispersions exhibit very soft acoustic phonon branches that give rise to soft lattices and very low speeds of sounds.

2.
Phys Chem Chem Phys ; 25(40): 27189-27195, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37789820

RESUMO

Complex oxides exhibit great functionality due to their varied chemistry and structures. They are quite flexible in terms of the ordering of cations, which can also impact their functional properties to a large extent. Thus, the propensity for a complex oxide to disorder is a key factor in optimizing and discovering new materials. Here, we show that the propensity to disorder cations in perovskites, pyrochlores, and spinels correlates with the energy to "invert" the structure - to directly swap the cations across the sublattices. This relatively simple metric, involving only two energetic calculations per compound, qualitatively captures disordering trends amongst compounds across these three families of materials and is quantitative in several cases. This provides a fast and robust metric to determine those complex oxides that are easy or hard to disorder, providing new avenues for quick screening of compounds for cation-ordering-dependent functionalities.

4.
Nano Lett ; 22(12): 4963-4969, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35687425

RESUMO

Thin film deposition from the vapor phase is a complex process involving adatom adsorption, movement, and incorporation into the growing film. Here, we present quantitative experimental data that reveals anion intermixing over long length scales during the deposition of epitaxial Fe2O3 and Cr2O3 films and heterostructures by oxygen-plasma-assisted molecular beam epitaxy. We track this diffusion by incorporating well-defined tracer layers containing 18O and/or 57Fe and measure their redistribution on the nanometer scale with atom probe tomography. Molecular dynamics simulations suggest potential intermixing events, which are then examined via nudged elastic band calculations. We reveal that adatoms on the film surface act to "pull up" subsurface O and Fe. Subsequent ring-like rotation mechanisms involving both adatom and subsurface anions then facilitate their mixing. In addition to film deposition, these intermixing mechanisms may be operant during other surface-mediated processes such as heterogeneous catalysis and corrosion.

5.
RSC Adv ; 10(20): 11737-11742, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35496618

RESUMO

Complex materials, containing multiple chemical species, often exhibit chemical disorder or inversion. Typically, this disorder is viewed as spatially homogeneous throughout the material. Here, we show, using a simple grain boundary in MgAl2O4 spinel, that this is not the case and that the level of inversion at the grain boundary plane is different than in the bulk. This has ramifications for the energetics of the boundary and how defects interact with it, as exemplified by the relative formation energy of vacancies. Using these results as motivation, we construct a simple model of inversion versus grain size that captures the salient behavior observed in experiments and allows us to extract inversion-relevant properties from those same experiments, suggesting that grain boundaries in the experimentally prepared material are essentially fully inverse. Together, these results highlight the role that microstructure plays on the inversion in the material.

6.
RSC Adv ; 10(42): 25107, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35517453

RESUMO

[This corrects the article DOI: 10.1039/D0RA00700E.].

7.
Materials (Basel) ; 12(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394714

RESUMO

One of the most critical challenges for the successful adoption of nuclear fusion power corresponds to plasma-facing materials. Due to its favorable properties in this context (low sputtering yield, high thermal conductivity, high melting point, among others), tungsten is a leading candidate material. Nevertheless, tungsten is affected by the plasma and fusion byproducts. Irradiation by helium nuclei, in particular, strongly modifies the surface structure by a synergy of processes, whose origin is the nucleation and growth of helium bubbles. In this review, we present recent advances in the understanding of helium effects in tungsten from a simulational approach based on accelerated molecular dynamics, which emphasizes the use of realistic parameters, as are expected in experimental and operational fusion power conditions.

8.
Sci Rep ; 9(1): 6499, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019281

RESUMO

Understanding the effect of dislocations on the mass transport in ionic ceramics is important for understanding the behavior of these materials in a variety of contexts. In particular, the dissociated nature of vacancies at screw dislocations, or more generally, at a wide range of low-angle twist grain-boundaries, has ramifications for the mechanism of defect migration and thus mass transport at these microstructural features. In this paper, a systematic study of the dissociated vacancies at screw dislocations in MgO is carried out. The important role of stress migration in the atomistic modeling study is identified. Another aspect of the current work is a rigorous treatment of the linear elasticity model. As a result, good agreement between the atomistic modeling results and the linear elasticity model is obtained. Furthermore, we demonstrate that the proposed vacancy dissociation mechanism can also be extended to more complicated ionic ceramics such as UO2, highlighting the generality of the mechanism.

9.
ACS Appl Mater Interfaces ; 11(28): 24906-24918, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30990303

RESUMO

Cost versus accuracy trade-offs are frequently encountered in materials science and engineering, where a particular property of interest can be measured/computed at different levels of accuracy or fidelity. Naturally, the most accurate measurement is also the most resource and time intensive, while the inexpensive quicker alternatives tend to be noisy. In such situations, a number of machine learning (ML) based multifidelity information fusion (MFIF) strategies can be employed to fuse information accessible from varying sources of fidelity and make predictions at the highest level of accuracy. In this work, we perform a comparative study on traditionally employed single-fidelity and three MFIF strategies, namely, (1) Δ-learning, (2) low-fidelity as a feature, and (3) multifidelity cokriging (CK) to compare their relative prediction accuracies and efficiencies for accelerated property predictions and high throughput chemical space explorations. We perform our analysis using a dopant formation energy data set for hafnia, which is a well-known high-k material and is being extensively studied for its promising ferroelectric, piezoelectric, and pyroelectric properties. We use a dopant formation energy data set of 42 dopants in hafnia-each studied in six different hafnia phases-computed at two levels of fidelities to find merits and limitations of these ML strategies. The findings of this work indicate that the MFIF based learning schemes outperform the traditional SF machine learning methods, such as Gaussian process regression and CK provides an accurate, inexpensive and flexible alternative to other MFIF strategies. While the results presented here are for the case study of hafnia, they are expected to be general. Therefore, materials discovery problems that involve huge chemical space explorations can be studied efficiently (or even made feasible in some situations) through a combination of a large number of low-fidelity and a few high-fidelity measurements/computations, in conjunction with the CK approach.

10.
Phys Chem Chem Phys ; 21(11): 5956-5965, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30820501

RESUMO

Using temperature accelerated dynamics, an accelerated molecular dynamics method, we examine the relationship between composition and cation ordering and defect transport in the mixed pyrochlore Gd2(Ti1-xZrx)2O7, using the oxygen vacancy as a representative defect structure. We find that the nature of transport is very sensitive to the cation structure, transitioning, as a function of composition, from three-dimensional migration to two-dimensional to pseudo-one-dimensional to becoming essentially immobile before reverting back to three-dimensional as the Zr content is increased. The rates of migration are also affected by the cation structure in the various compositions. This behavior is driven by the connectivity of Ti polyhedra in the material, with more extensive networks of Ti ions leading to a greater ability of the vacancy to traverse the material. Our results indicate that the nature of transport is dictated by the cation structure of the material and that, conversely, the cation structure could be used to control transport and potentially other functionalities in mixed pyrochlores.

11.
Phys Rev Lett ; 120(10): 106101, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570319

RESUMO

Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

12.
Nat Commun ; 8(1): 618, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931812

RESUMO

Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd2Ti2O7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivity is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.Diffusion plays an important role in sintering, damage tolerance and transport. Here authors perform classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd2Ti2O7 pyrochlore and report non-monotonic evolution of cation diffusivity.

13.
Sci Rep ; 7(1): 2522, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28559588

RESUMO

Tungsten is a promising plasma facing material for fusion reactors. Despite many favorable properties, helium ions incoming from the plasma are known to dramatically affect the microstructure of tungsten, leading to bubble growth, blistering, and/or to the formation of fuzz. In order to develop mitigation strategies, it is essential to understand the atomistic processes that lead to bubble formation and subsequent microstructural changes. In this work, we use large-scale Accelerated Molecular Dynamics simulations to investigate small (N = 1,2) V N He M vacancy/helium complexes, which serve as the nuclei for larger helium bubble growth, over timescales reaching into the milliseconds under conditions typical of the operation of fusion reactors. These complexes can interconvert between different I L V N+L He M variants via Frenkel pair nucleation (leading to the creation of a additional vacancy/interstitial pair) and annihilation events; sequences of these events can lead to net migration of these embryonic bubbles. The competition between nucleation and annihilation produces a very complex dependence of the diffusivity on the number of heliums. Finally, through cluster dynamics simulations, we show that diffusion of these complexes provides an efficient pathway for helium release at fluxes expected in fusion reactors, and hence that accounting for the mobility of these complexes is crucial.

14.
Nanoscale ; 9(20): 6826-6836, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28497819

RESUMO

We use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. These results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

15.
Phys Chem Chem Phys ; 18(33): 22852-63, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27480791

RESUMO

Pyrochlores, a class of complex oxides with formula A2B2O7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu(3+) and Pu(4+) segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound. We also find that pyrochlore/pyrochlore bicrystals A2B2O7/A2'B2'O7 can be used to immobilize Pu(3+) and Pu(4+) either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu(4+) segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu(3+) is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. In particular, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.

16.
Phys Chem Chem Phys ; 18(29): 19647-54, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27380920

RESUMO

Magnesium aluminate spinel (MgAl2O4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures. We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. These findings illuminate important new details regarding defect kinetics relevant to the application of MgAl2O4 in extreme environments.

17.
Phys Chem Chem Phys ; 18(25): 16921-9, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27282392

RESUMO

Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.

18.
Phys Rev Lett ; 116(10): 105501, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015491

RESUMO

We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

19.
Annu Rev Chem Biomol Eng ; 7: 87-110, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26979413

RESUMO

Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD.


Assuntos
Simulação de Dinâmica Molecular , Algoritmos , Método de Monte Carlo , Nanotubos/química , Propriedades de Superfície , Temperatura , Termodinâmica
20.
Sci Rep ; 5: 13086, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26306812

RESUMO

The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts ­ the Hume-Rothery rules and the Ellingham diagram ­ qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...